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Abstract—The advances in Internet of Things, big data, and machine learning technologies have greatly transformed our daily lives
into much more intelligent ones by offering various promising services. Among those services, the discrete Fréchet distance (DFD)
range query, which aims to obtain a set of trajectories whose distances to a given query trajectory do not exceed a given threshold, has
been widely applied to support applications such as vehicle trajectory clustering and other data processing tasks. Meanwhile, due to
the huge data volume issue in the big data era, there is a trend towards outsourcing various query services to the cloud for achieving a
better performance. However, since the cloud is not fully trustable, designing privacy-preserving query services becomes a research
focus. Over the past years, many schemes focusing on privacy-preserving trajectory analysis have been proposed, but none of them
can well support privacy-preserving DFD range queries. Aiming at addressing this challenge, this paper proposes a novel
privacy-preserving DFD range query scheme, in which queries are conducted in a filtration-and-verification manner and the privacy of
the dataset and queries can be preserved. Specifically, by indexing the dataset with two R-trees, a query can be conducted by i)
querying the two R-trees to obtain a candidate set and ii) verifying each trajectory in the set, which involve two basic operations,
namely, rectangle intersection detection and proximity detection. To preserve the privacy of the dataset and queries, we build the two
basic operations upon a novel Inner-Product Preserving Encryption (IPPE) scheme, which is proved to be selectively secure with trivial
leakages. Besides, extensive experiments are conducted, and the results demonstrate that our proposed scheme can significantly
reduce the computational cost by effectively reducing the candidate set’s size.

Index Terms—Trajectory similarity, discrete Fréchet distance, range query, privacy-preserving, outsourced encrypted data.
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1 INTRODUCTION

W ITH the proliferation of Internet of Things (IoT), big
data and machine learning technologies, smart cities

have been attracting a lot of attention from both industry
and academia [1]. It is reported that the global smart cities
market size is USD 410.8 billion in 2020, and it is estimated
to be 820.7 billion by 2025 with a compound annual growth
rate of 14.8% [2]. One of the most important goals of a smart
city is to improve the efficiency and security of urban trans-
portation, which naturally involves collecting and analyzing
trajectory data. Meanwhile, as the trajectory dataset grows
in size, there is a trend towards outsourcing the data as well
as the trajectory analysis services to the cloud for more flexi-
ble computational resources and guaranteed service quality
[3]–[5]. In this paper, we will focus on outsourced trajectory
similarity range query services, where the trajectory similar-
ity metric is selected to be discrete Fréchet distance (DFD).
The DFD between two trajectories can be defined intuitively
(for a formal definition, see Section 3.1) as the shortest
leash connecting two objects, each of which goes forward
with non-negative speed along one of the two trajectories,
and enabling them to move from the beginnings of the
corresponding trajectories to the ends. As demonstrated in
DFD’s definition, it is well suited for scenarios where there
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is an upper-bound for the distance between two moving
objects [6]–[8]. An example of a DFD range query in a smart
city is efficient carpooling services [9]. That is, a passenger
may have a plan to go to multiple locations for some quick
tasks (e.g., picking up items), while hailing a car at each
task location will inevitably result in longer waiting time
for the passenger and unnecessary operating cost for the
carpooling service. In this case, it might be a better option
for he/she to launch a DFD range query to find one vehicle
from the carpooling service. Thereby, he/she can complete
the tasks along the vehicle’s trajectory, while the distance
between each stop point in the vehicle’s trajectory and the
corresponding task location(s) does not exceed a threshold.

While being benefited by cloud computing, the out-
sourced services also suffer from privacy issues. The cloud
server, which is not fully trusted, can obtain the trajectory
data and queries containing sensitive information. A natural
solution for this problem is to encrypt the data before out-
sourcing. Nevertheless, it is also commonly acknowledged
that these techniques will obstruct implementing the range
query service. Although many privacy-preserving range
query schemes have been proposed, none of the existing
works focuses on privacy-preserving DFD range queries to
the best of our knowledge. The most related one to our work
is Zhu et al.’s proposal [10]. However, in order to achieve
privacy-preserving DFD range query with Zhu et al.’s work
or other existing privacy-preserving range query works on
two-dimensional points, the cloud server needs to linearly
scan the dataset to determine whether the DFD between
each trajectory in the dataset and the query trajectory ex-
ceeds the given threshold or not. As a result, these schemes
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do not apply to our scenario due to high computational
costs, especially when dealing with large datasets.

To address the above challenges, in this paper, we
propose a privacy-preserving DFD range query (PDRQ)
scheme, which processes DFD range queries in a filtration-
and-verification manner. Specifically, our scheme first in-
dexes the given trajectory dataset with two R-trees and up-
loads the encrypted dataset and R-trees to the cloud. Then,
upon receiving an encrypted query request from a user, the
cloud server first obtains a set of candidates by querying the
two encrypted R-trees. After that, it refines the candidate
set by verifying the DFD between each trajectory in the
candidate set and the query trajectory over ciphertexts. To
this end, we design an Inner-Product Preserving Encryption
scheme to enable the cloud server to conduct DFD range
queries over the encrypted dataset and index while preserv-
ing the data privacy. Specifically, the contributions of this
work are four-fold.

1) First, based on the bilinear pairing and Bloom fil-
ter techniques, we design an Inner-Product Preserving
Encryption (IPPE) scheme, which can reveal whether
the inner-product of two vectors is negative or non-
negative while protecting the plaintext values of two
vectors or their inner-product.

2) Second, we design two IPPE-based approaches to re-
spectively support privacy-preserving proximity detec-
tion and rectangle intersection detection. In specific,
given two points and a threshold, the former detection
approach can securely verify whether the distance be-
tween the points exceeds the threshold or not. Mean-
while, given two rectangles, the latter one can securely
check whether they intersect or not.

3) Third, we propose our privacy-preserving discrete
Fréchet distance range query scheme. In specific, the
scheme first employs an index containing two R-trees
for efficient filtration, in which the IPPE-based rectangle
intersection detection approach is deployed for privacy-
preserving R-tree traverse. Then, it employs the IPPE-
based proximity detection approach to securely verify
each trajectory in the filtration result.

4) Finally, we analyze the security of the proposed scheme
and conduct extensive experiments to demonstrate its
efficiency. The result of security analysis shows that
our proposed scheme can preserve the privacy of the
trajectory dataset and user queries. Besides, the result
of performance analysis shows that our scheme can sig-
nificantly reduce the computational cost by effectively
reducing the candidate set’s size.

The remainder of this paper is organized as follows.
In Section 2, we formalize the system model and security
model, and identify our design goal. Then, we recall some
preliminaries in Section 3. In Section 4, we present our DFD
range query scheme, followed by the security and perfor-
mance analysis in Section 5 and Section 6, respectively. We
also review some related works in Section 7. Finally, we
conclude this work in Section 8.

2 MODELS AND DESIGN GOAL

In this section, we formalize our system model and security
model, and identify our design goal.

2.1 System Model

In this work, we consider a privacy-preserving DFD range
query scenario, which mainly consists of three types of
entities, namely, a service provider SP , a cloud server CS ,
and a set of query users U , as shown in Fig. 1.

Service Provider

Cloud !"

Query User %

Trajectory Dataset

Authorization Keys

Query Response

DFD Range Query

Fig. 1. The system model under consideration.

• Service Provider SP : In our system model, the service
provider SP has a set of trajectory records T = {ti =
(ID i, 〈Pi,1, Pi,2, · · · , Pi,li〉) | i = 1, 2, · · · , N}, in which ID i

represents the identity of trajectory ti, 〈Pi,1, Pi,2, · · · , Pi,li〉
denotes an array of length li, and each element in the
array is a k-dimensional point (x1, x2, · · · , xk). Since SP
could be weak in computing and storage, he/she is willing
to outsource his/her data to the cloud for providing data
services, e.g., the DFD range query service considered in
this paper. However, as these trajectory records may con-
tain some sensitive information and the cloud is not fully
trusted, they need to be encrypted before being outsourced
to the cloud.
• Cloud Server CS : In our system model, we consider

CS is equipped with powerful computational resources and
abundant storage space. Therefore, it is employed to store
the encrypted dataset from SP and offer the DFD range
query service to query users Ui ∈ U .
• Query Users U = {U1, U2, · · · }: As for a query user

Ui ∈ U , he/she is authorized by SP and can launch DFD
range queries. In specific, by submitting a query with a
query trajectory tq and a distance threshold ε, the user
Ui can obtain a set of trajectories’ identities Results ⊂
{IDi | i = 1, 2, · · · , N}, such that for each ID i ∈ Results ,
the DFD between the corresponding trajectory ti and the
query trajectory tq is not larger than the threshold ε, i.e.,
δd(tq, ti) ≤ ε. Note that, the distances between points in the
trajectories are given by the Euclidean distance.

2.2 Security Model

In our security model, we consider the service provider
SP is trusted as he/she is the data owner and has no
motivation to deviate from the protocol. That is, the ser-
vice provider will outsource a correct dataset and honestly
distribute secret keys. However, the query users Ui ∈ U are
considered to be honest-but-curious, i.e., they will honestly
launch queries, but they may be curious about others’ query
requests and query results. As for the cloud server CS , it is
considered to be honest-but-curious. In specific, although it
will honestly store the trajectory data from SP and correctly
respond to DFD range queries from Ui, it is curious about
the plaintext of the trajectory data from SP , the plaintext of
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query requests, and the corresponding query results. Note
that, the external attackers may launch other active attacks,
i.e., Denial of Service (DoS) attacks, to the network. Since
this work focuses on privacy preservation, those attacks are
beyond the scope of this paper, and will be discussed in our
future work.

2.3 Design Goal
The design goal of this work is to present a privacy-
preserving DFD range query scheme to meet the require-
ments defined in the system model and security model. In
specific, the proposed scheme should have the following
two properties.
• The proposed scheme should be privacy-preserving. The

server CS should not be able to obtain the private informa-
tion in the system, including the plaintext of the trajectory
dataset from SP and user queries.
• The proposed scheme should be efficient: To achieve

privacy-preserving DFD range queries, some cryptographic
techniques need to be employed for preserving the data pri-
vacy. However, as the proposed scheme focuses on the out-
sourced computation scenario, its efficiency should be taken
into consideration. That is, to make the scheme practical, its
overhead in terms of computation should be minimized.

3 PRELIMINARIES

In this section, we first review the discrete Fréchet distance.
Then, we respectively recall three techniques which will be
used in our proposed scheme, namely, R-tree [11], bilinear
pairing, and Bloom filter.

3.1 Discrete Fréchet Distance
The Fréchet distance is a measure of similarity between
curves, in which the location and the ordering of points
along the curves are considered. The intuitive idea of the
Fréchet distance is that, considering two curves are respec-
tively the trajectories of a person and a dog that is walked
by him/her, the Fréchet distance between the curves is the
minimum length of leash that is sufficient for the person
and the dog to traverse their separate paths from beginning
to end. Note that, during the walk, the speeds of the per-
son and the dog are two non-negative numbers changing
according to time, i.e., both of them cannot move backward.
In this work, we consider discrete Fréchet distance (DFD),
i.e., the curves are comprised of limited numbers of points,
and we only consider the length of the leash when both
endpoints are located at vertices of the curves. In specific,
the definition of DFD is as follows.

Definition 1. (Discrete Fréchet Distance). Given two
polygonal curves ti = 〈Pi,1, Pi,2, · · · , Pi,li〉 and tj =〈
Pj,1, Pj,2, · · · , Pj,lj

〉
of lengths li and lj , and a distance

function d(·, ·) for any two points in the curves, the discrete
Fréchet distance between ti and tj is

δd(ti, tj) = min
α,β

max
t∈[0,1]

d(α(t), β(t)),

where α(·) (resp., β(·)) maps time t to a point in ti (resp.,
tj), and both α(·) and β(·) are monotone. Moreover, when
t = 0 and t = 1, the two functions respectively returns the
head and tail nodes in the two curves, e.g., α(0) = Pi,1,
α(1) = Pi,li , β(0) = Pj,1, and β(1) = Pj,lj .

3.2 R-Tree

An R-tree [11] is a data structure used for organizing multi-
dimensional data records ri = 〈(xi,1, xi,2, · · · ), y〉, and it can
answer range queries and nearest neighbor queries over the
data points. Its main idea is to recursively group nearby data
points and represent each group as its minimum bounding
rectangle (MBR)Rj in the corresponding parent node. Then,
during conducting a range query, a node can be pruned if
its MBR has no intersection with the query range. As shown
in Fig. 2, an R-tree consists of two types of nodes, namely,
inner nodes and leaf nodes. Specifically, an inner node has
several children, and it stores the MBR of each child node;
while a leaf node contains an array of data points that are
adjacent.

𝑅1 𝑅2

𝑅3 𝑅4 𝑅5 𝑅6 𝑅7

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10 𝑟11 𝑟12 𝑟13

Fig. 2. An example of an R-tree.

Given a set of data points, an R-tree can be constructed
in top-down or bottom-up approaches [12]. Then, to obtain
data points in query rangeRq , the query algorithm traverses
the R-tree from its root. Specifically, the query is conducted
in the following three steps.
• Step 1: Initialize an empty queue and an empty result

set, and put the R-tree’s root node into the queue.
• Step 2: Take a node from the queue, test the intersection

between each MBR Rj in the node and the query range Rq ,
and ignore a child node if the corresponding Rj and Rq do
not intersect. Otherwise, if the child node is a leaf node, then
add the data records within Rq∩Rj into the result set; if the
child node is an inner node, append it to the queue.
• Step 3: Repeat Step 2 until the queue is empty and the

result set contains all the data records that are covered by
the query range R.

3.3 Bilinear Pairing

A bilinear pairing can be generated based on a security pa-
rameter λ, and it can be denoted as a 5-tuple (G1,G2, p, g, e),
where G1 and G2 are two cyclic groups of the same big
prime order p, g is an arbitrary generator of G1, and
e : G1×G1 7→ G2 be a bilinear map, which has the following
three properties:
• Bilinearity: e(P x, Qy) = e(P,Q)xy , for any x, y ∈ Z∗p

and any P,Q ∈ G1.
• Non-degeneracy: e(g, g) 6= 1.
• Computability: e(·, ·) can be computed efficiently.

3.4 Bloom Filter

A Bloom filter (BF) is a space-efficient data structure for
answering membership queries, i.e., identifying whether an
item is a member of a set or not with a bounded false-
positive rate. Specifically, an empty Bloom filter is an array
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of ∆ bits, and a set of f hash functions {hi}fi=1, where all bits
in the array are set to 0 and each hash function hi : {0, 1}∗ 7→
{1, 2, · · · ,∆} maps an element to one of the ∆ positions in
the array. Then, the Bloom filter is initialized for a set S
by setting locations {hi(sj) | i = 1, 2, · · · , f, and sj ∈ S}
to 1, and we denote the resulting Bloom filter as BF (S).
After that, BF (S) can determine whether an element s is a
member of S by testing whether the corresponding bits of
locations {hi(s) | i = 1, 2, · · · , f} are 1. If any of these bits
is 0, then the element s is definitely not a member of S , i.e.,
s 6∈ S ; otherwise, s ∈ S with a false-positive rate less than
(1− e−f ·|S|/∆)f , where e is the Euler’s number.

4 OUR PROPOSED SCHEME

In this section, we propose our PDRQ scheme. As men-
tioned in the Introduction, the scheme is built upon two ba-
sic operations, namely, rectangle-intersection detection and
proximity detection, and the privacy of them is preserved by
a novel Inner-Product Preserving Encryption (IPPE) scheme.
Therefore, for the simplicity of introduction, we first intro-
duce the IPPE scheme and the IPPE-based constructions
for proximity detection and rectangle-intersection detection.
Then, based on these building blocks, we present the con-
struction of our PDRQ scheme. We summarize the some
notations used in this section in Table. 1.

TABLE 1
Notations

Notation Description
T = {ti | i = 1, · · · , N} The dataset of trajectories
ti = {IDi,

〈
Pi,1, · · · , Pi,li

〉
} A trajectory consisting of li k-

dimensional points
Q = {tq , ε} A DFD range query request with a

query trajectory tq and a distance
threshold ε

δ(ti, tj) The DFD between two trajectories
ti and tj

Rti and R̂ti The minimum boundary rectangle
(MBR) and the extended MBR of ti

[xi,m,1, xi,m,2] The range covered byRti on them-
th dimension

{T`}2`=1 The two R-tree built from {xi,m,`}
of all trajectories’ MBRs

uPi
, [[uPi

]], um,i, [[ui,m]] The vector and the corresponding
ciphertext built from a point Pi,
and those for the m-th dimension
of a rectangle Ri

vPj ,ε, [[vPj ,ε]], vj,m, [[vj,m]] The vector and the corresponding
token built from a point Pj and ε,
and those for the m-th dimension
of a rectangle Rj

4.1 Inner-Product Preserving Encryption Scheme

In this subsection, we introduce our Inner-Product Pre-
serving Encryption (IPPE) scheme, which can determine
whether the inner product of two vectors is negative or
non-negative without revealing the plaintexts of the vectors
and their inner product. Specifically, assume there are two
d-dimensional vectors u ∈ U and v ∈ V, where U and V
are the spaces of u and v, respectively. After encrypting
u and v with different algorithms, i.e., [[u]]1 and [[v]]2, the
IPPE scheme can determine whether 〈u,v〉 < 0 or not,

and the values of u, v, and 〈u,v〉 are privacy-preserving.
In the following, we respectively refer to u and v as a data
vector and a token vector. Then, the IPPE scheme consists
of the following four algorithms, namely, Key Generation,
Encryption, Token Generation, and Check.

4.1.1 Key Generation

Given a security parameter λ, the dimension of vectors d,
and the maximum possible absolute value of inner products
T , the key generation algorithm generates keys for the IPPE
scheme as follows.
• Step 1: The algorithm generates a bilinear pairing

(G1,G2, p, g, e) with the security parameter λ, where p >
2(T 2 + T ).
• Step 2: The algorithm generates two random numbers

a and b ∈ Z∗p, and it computes A = ga and B = gb.

• Step 3: It constructs a set H =
{
H(e(g, g)abi)

}T 2+T

i=1
,

whereH(·) is a secure hash function. Then, it builds a Bloom
filter BF (H) from the setHwith an acceptable false-positive
rate, regarding the expected quality of services, by adjusting
the length of the array and the number of hash functions,
i.e., ∆ and f .
• Step 4: It randomly generates an invertible matrix M

over Zp of order (d+ 2)× (d+ 2).
Finally, the algorithm outputs a public parameter

PP = ((G1,G2, p, g, e),BF (H)), an encryption key EK =
(M−1, A) and a token generation key TK = (M, B).

4.1.2 Encryption

Given the public parameter PP and the encryption key
EK , the encryption algorithm encrypts a data vector u =
(u1, u2, · · · , ud) as follows.
• Step 1: The algorithm selects two random numbers γ1

and γ2, such that |γ1| < γ2 ≤ b
√

T 2

Tu
c, where T is the max-

imum possible value of inner products, Tu = max
v
〈u,v〉 is

the maximum inner products of u with different v ∈ V.
• Step 2: The algorithm constructs a vector u′ =

(u′1, u
′
2, · · · , u′d, u′d+1, u

′
d+2) of length d + 2, where u′i =

γ2 · ui, for i = 1, 2, · · · , d, u′d+1 = γ1 and u′d+2 = 1.
• Step 3: The algorithm computes a vector u′′T =

M−1u′T mod p = (u′′1 , u
′′
2 , · · · , u′′d+2) and outputs the ci-

phertext of the data vector u, i.e., [[u]]1 = ({Au′′
i }d+2
i=1 ).

4.1.3 Token Generation

Given the public parameter PP and the token generation
key TK , the token generation algorithm encrypts a token
vector v = (v1, v2, · · · , vd) in the following steps.
• Step 1: The algorithm selects two random numbers

γ3 and γ4, such that |γ3| < γ4 ≤ b
√

T 2

Tv
c, where Tv =

max
u
〈u,v〉 is the maximum 〈u,v〉 with different u ∈ U.

• Step 2: The algorithm constructs a vector v′ =
(v′1, v

′
2, · · · , v′d, v′d+1, v

′
d+2), where v′i = γ4 · vi, for i =

1, 2, · · · , d, v′d+1 = 1 and v′d+2 = γ3.
• Step 3: The algorithm computes a vector v′′ = vM mod

p = (v′′1 , v
′′
2 , · · · , v′′d+2) and outputs the ciphertext of the

token vector v, i.e., [[v]]2 = ({Bv′′i }d+2
i=1 ).
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4.1.4 Check
Given the encrypted data vector [[u]]1 and token vector [[v]]2,
the check algorithm determines whether 〈u,v〉 is negative
or non-negative by computing Ψ =

∏d+2
i=1 e(A

u′′
i , Bv

′′
i ). If

H(Ψ) ∈ BF (H), then 〈u,v〉 ≥ 0; and 〈u,v〉 < 0, otherwise.
For simplicity, we denote the check algorithm as Check(·),
e.g., Check([[u]]1, [[v]]2), which will return either 0 or 1 to
indicate 〈u,v〉 < 0 or ≥ 0.

4.1.5 Correctness
The correctness of the scheme can be analyzed as follows.
Based on the properties of bilinear pairing, we have

Ψ =
d+2∏
i=1

e(Au
′′
i , Bv

′′
i ) = e(ga, gb)

∑d+2
i=1 u

′′
i ·v

′′
i

= e(g, g)ab·(γ2·γ4·〈u,v〉+γ1+γ3),

as
∑d+2
i=1 v

′′
i · u′′i = v′′ · u′′T = v′M · M−1u′T = γ2 · γ4 ·

〈u,v〉+γ1·1+1·γ3. Therefore, if 〈u,v〉 ∈ [0, T ], then we have
γ2 ·γ4 · 〈u,v〉+γ1 +γ3 ∈

(
0, T 2 + T

)
, i.e., Ψ ∈ H; otherwise,

we have γ2 · γ4 · 〈u,v〉 + γ1 + γ3 ∈
(
−T 2 − T, 0

)
, i.e., Ψ 6∈

H. Based on the property of the Bloom filter, BF (H) can
determine whether Ψ ∈ H or not with an acceptable false-
positive rate. Thus, the correctness of the scheme holds.

4.2 IPPE-based Proximity Detection

In this subsection, based on the IPPE scheme, we introduce
an approach to detect whether the distance between two
given points exceeds a threshold or not. That is, given
two k-dimensional points {Pi = (xi,1, xi,2, · · · , xi,k), Pj =
(xj,1, xj,2, · · · , xj,k)} and a threshold ε, the approach
detects whether the Euclidean distance between them
d(Pi, Pj) =

√∑k
m=1(xi,m − xj,m)2 ≤ ε or not. The idea of

the detection approach is to covert the inequality evaluation
into testing the sign of two vectors’ inner-product, in which,
the data vector represents a point (e.g., Pi), and the token
vector represents the other point (e.g., Pj) and the threshold
ε. Specifically, given a group of keys {PP ,EK ,TK} gen-
erated for the IPPE scheme with the dimension parameter
d = k+2, the approach consists of the following three parts,
namely, Encryption, Token Generation, and Check.
• Encryption: To encrypt the point Pi with the IPPE

scheme, the encryption algorithm first converts it into a data
vector uPi

=
(
−
∑k
m=1 x

2
i,m, 1, {2xi,m}

k
m=1

)
of length k+2.

Then, given PP and EK , the algorithm encrypts uPi into
[[uPi ]]1 with the IPPE scheme.
• Token Generation: Similarly, the token generation al-

gorithm first converts the point Pj into a token vector
vPj ,ε =

(
1, ε2 −

∑k
m=1 x

2
j,m, {xj,m}

k
m=1

)
of length k + 2.

Then, given PP and TK , the algorithm encrypts the vector
vPj ,ε into [[vPj ,ε]]2 with the IPPE scheme.
• Check: Given the public parameter PP and the two

encrypted vectors {[[uPi
]]1, [[vPj ,ε]]2}, the check algorithm

can determine whether the distance d(Pi, Pj) ≤ ε or not by
checking whether Check([[uPi ]]1, [[vPj ,ε]]2)

?
= 1. Specifically,

if Check([[uPi ]]1, [[vPj ,ε]]2) = 1, then
〈
uPi ,vPj ,ε

〉
≥ 0, i.e.,〈

uPi ,vPj ,ε

〉
≥ 0, then we have d(Pi, Pj) ≤ ε. Otherwise,

we have d(Pi, Pj) > ε.

Correctness. Based on the correctness of the IPPE scheme,
we can obtain the correct sign of

〈
uPi

,vPj ,ε

〉
. Therefore, we

show the correctness of this approach by analyzing the sign
of
〈
uPi ,vPj ,ε

〉
= 1×

(
−
∑k
m=1 x

2
i,m

)
+
(
ε2 −

∑k
m=1 x

2
j,m

)
×

1 +
∑k
m=1 2xi,m × xj,m = ε2 − d(Pi, Pj)

2. Since ε ≥ 0 and
d(Pi, Pj) ≥ 0, we have ε ≥ d(Pi, Pj) when

〈
uPi ,vPj ,ε

〉
≥ 0;

and ε < d(Pi, Pj), otherwise. Thus, the correctness of the
approach holds.

4.3 IPPE-based Rectangle-Intersection Detection

In this subsection, we introduce an approach to de-
tect whether two rectangles intersect or not. That is,
given two rectangles Ri and Rj , the approach de-
tects whether Ri ∩ Rj = ∅ or not. To this end,
we respectively denote the two k-dimensional rectangle
as

∏k
m=1[xi,m,1, xi,m,2] and

∏k
m=1[xj,m,1, xj,m,2], where

[xi,m,1, xi,m,2] and [xj,m,1, xj,m,2] are the ranges respec-
tively covered by Ri and Rj on the m-th dimension. Then,
the idea of the approach is to detect overlap on each
dimension, i.e., for each dimension m = 1, 2, · · · , k, the
approach checks whether [xi,m,1, xi,m,2] ∩ [xj,m,1, xj,m,2] =
∅ or not. If there exists an m ∈ [1, · · · , k] such that
[xi,m,1, xi,m,2] ∩ [xj,m,1, xj,m,2] = ∅, the two rectangles Ri
and Rj do not intersect. Moreover, for each dimension m,
we convert ranges [xi,m,1, xi,m,2] and [xj,m,1, xj,m,2] into
two vectors and employ the IPPE to securely check the
sign of their inner-product. Specifically, given a group of
keys {PP ,EK ,TK} and a random number γ̂m ∈ Zp, the
approach detects overlap on the m-th dimension in three
steps, namely, Encryption, Token Generation, and Check.
• Encryption: In this step, the algorithm first converts the

range of Ri on the m-th dimension into a data vector ui,m =
(γ̂m − xi,m,1xi,m,2, 1, xi,m,1, xi,m,2). Then, given the public
parameter PP and the encryption key EK , it encrypts the
vector ui,m into [[ui,m]]1.
• Token Generation: In the Token Generation step, the

algorithm first converts the range of Rj on the m-
th dimension into a token vector vj,m = (1,−γ̂m −
xj,m,1xj,m,2, xj,m,1, xj,m,2). Then, given the public param-
eter PP and the token generation key TK , it encrypts the
token vector vj,m into [[vj,m]]2.
• Check: This algorithm checks whether two rectan-

gles overlap on the m-th dimension. The input of this
algorithm includes the public parameter PP and two en-
crypted vectors {[[ui,m]]1, [[vj,m]]2} representing the ranges
covered by Ri and Rj on the m-th dimension. Then, if
Check([[ui,m]]1, [[vj,m]]2) = 1, i.e., 〈ui,m,vj,m〉 ≥ 0, then we
know the two rectangles Ri and Rj overlap on the m-th
dimension; otherwise, Check([[ui,m]]1, [[vj,m]]2) = 0.

Correctness. Based on the correctness of the IPPE scheme,
we can obtain the correct sign of 〈ui,m,vj,m〉. Therefore, we
show the correctness of this approach by analyzing the sign
of 〈ui,m,vj,m〉 = γ̂m − xi,m,1xi,m,2 − γ̂m − xj,m,1xj,m,2 +
xi,m,1xj,m,1 + xi,m,2xj,m,2 = (xi,m,2 − xj,m,1)(xj,m,2 −
xi,m,1). Since xi,m,1 ≤ xi,m,2 and xj,m,1 ≤ xj,m,2, when
R1 and R2 overlap on the m-th dimension, we have
xi,m,2 ≥ xj,m,1 and xj,m,2 ≥ xi,m,1, and 〈ui,m,vj,m〉 ≥ 0;
and 〈ui,m,vj,m〉 < 0, otherwise. Thus, the correctness of
this approach holds.
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4.4 PDRQ Scheme
Based on the three building blocks, we propose our PDRQ
scheme in this subsection. Before delving into our scheme,
we first explain the intuitive idea of our scheme on plaintext.
After that, we respectively detail the three parts of the
scheme, namely, System Initialization, Token Generation,
and Query.

4.4.1 Scheme Overview
Given the trajectory dataset, the scheme conducts privacy-
preserving DFD range queries in two steps, i.e., filtration
and verification. That is, to conduct a query, the scheme first
filters the original dataset to obtain a set of possible query
results, and then it verifies the set and removes elements
from the set that does not satisfy the query. Then, we
respectively explain the ideas of these two steps as follows.

𝜀

𝜀

𝑡𝑖

𝜀

𝑡𝑗

MBR of 𝑡𝑗

MBR of 𝑡𝑖

Extended MBR of 𝑡𝑖

𝜀

Fig. 3. An example of two trajectories ti and tj comprised of 2 dimen-
sional points. In the figure, we draw ti’s MBR and its extension, as well
as tj ’s MBR. The MBR of tj is not covered by the extended MBR of ti,
as the distance between the MBR of ti and the circled point on tj is
greater than the threshold ε. Therefore, δd(ti, tj) > ε.

• Filtration: The filtration step of the scheme is based
on an observation as shown in Fig. 3. That is, given two
trajectories ti and tj , we can draw their minimum boundary
rectangles (MBR), i.e., Rti and Rtj . Then, we compute the
extended MBR R̂ti by expending each dimension of Rti by
ε. Similarly, we compute R̂tj from Rtj . As shown in Fig. 3,
if the MBR of one trajectory (e.g., Rtj ) is not fully covered
by the extended MBR of the other trajectory (e.g., R̂ti ), then
there must exist at least one point Pj,m in tj that satisfies
the inequality d(Pi,m, Pj,m′) > ε for all Pi,m′ in ti, i.e., its
distances to all points in ti exceed the threshold. Therefore,
δd(ti, tj) > ε.

Based on this observation, we can index the trajectories
in the dataset based on their MBRs, and during conduct-
ing a query, the scheme can ignore the trajectories whose
MBRs are not covered by the extended MBR of the query
trajectory or whose extended MBR cannot cover the MBR
of the query trajectory. In specific, we first initialize two
empty R-trees T1 and T2. Then, for each trajectory ti ∈ T ,
we compute its MBR Rti =

∏k
m=1[xi,m,1, xi,m,2] and put

points (xi,1,1, xi,2,1, · · · , xi,k,1) and (xi,1,2, xi,2,2, · · · , xi,k,2)
respectively into T1 and T2, as shown in Fig. 4. Upon
receiving a query trajectory tq , our scheme obtains a can-
didate set containing possible query result in the following
three steps: i) It computes the MBR of tq , i.e., Rtq =∏k
m=1[xq,m,1, xq,m,2]. ii) It respectively queries T1 and T2

to obtain two sets

C1 = {vi | xi,m,1 ∈ [xq,m,1 − ε, xq,m,1 + ε],m = 1, · · · , k} ,

C2 = {vi | xi,m,2 ∈ [xq,m,2 − ε, xq,m,2 + ε],m = 1, · · · , k} .

iii) It outputs the candidate set C = C1 ∩ C2, which will be
further refined in the verification step.

𝜀

𝜀

Fig. 4. An example of indexing a 2-dimensional dataset. In the index,
two R-trees are respectively constructed for the lower-left (•) and upper-
right (�) vertices of ti’s MBR, for ti ∈ T . To conduct a query, the
algorithm first obtains the lower-left (◦) and upper-right (�) vertices of the
query trajectories, and queries each R-tree with a square query range
centered on the corresponding vertex with a side length of 2ε. Then, one
trajectory is selected by intersecting the query results from both R-trees.

• Verification: In the verification step, trajectories ti ∈ C
that do not satisfy the query, i.e., δd(ti, tq) > ε will
be removed. However, instead of directly computing the
DFD between the query trajectory tq and each trajectory
ti ∈ C, our scheme verifies whether each distance δd(tq, ti)
is greater than ε or not. If δd(tq, ti) > ε, then ti does not
satisfy the query and will be removed from C. Specifically,
as demonstrated in Alg. 1, a trajectory ti ∈ C in verified in
the following steps.
∗ Step 1: The algorithm computes the Euclidean distance
d(Pq,1, Pi,1) between the first two points of the two tra-
jectories tq and ti. If the d(Pq,1, Pi,1) > ε, the algorithm
outputs false indicating that the DFD δd(tq, ti) > ε.
Otherwise, the algorithm proceeds to Step 2.
∗ Step 2: It applies the verification algorithm to sub-

trajectory pairs (tq[2..], ti), (tq, ti[2..]), and (tq[2..],
ti[2..]), where tq[2..] and ti[2..] respectively denote the
resulting trajectories after removing the first nodes from
tq and ti. If any of the three invokes of the algorithm re-
turns true, the algorithm outputs true indicating that the
DFD δd(tq, ti) ≤ ε. Otherwise, the algorithm proceeds
to Step 3.
∗ Step 3: The algorithm outputs whether both trajectories

respectively only contain one points. If true, then the
algorithm has completely checked the two trajectories
and δd(tq, ti) ≤ ε; otherwise, the rests of the two
trajectories cannot satisfy the query, and ti should be
removed from the candidate set C.

After the verification step, the candidate set will contain
only trajectories that satisfy the query, and the set can be
returned to the query user as the query result.

4.4.2 System Initialization
In the system initialization part, the service provider SP
initializes the whole system in the following two phases,
namely, Key Generation and Data Outsourcing.
• Key Generation: In the Key Generation phase, the ser-

vice provider SP generates keys for all entities in the system
through three steps.
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Algorithm 1 Verification process for a single trajectory.
Input: The query trajectory tq = {Pq,1, Pq,2, · · · },

a trajectory in the dataset, ti = {Pi,1, Pi,2, · · · }.
Output: Whether δd(tq, ti) ≤ ε or not.

1: j← 1, k← 1
2: return VERIFY(tq , ti, j, k)
3:
4: function VERIFY(tq , ti, j, k)
5: . Verify the distance between the nodes pointed by both pointers
6: if d(Pq,j,Pi,k

) > ε then
7: return false
8:
9: . Try moving pointers forward and recursively checking the rest

parts of the two trajectories
10: if j+ 1 ≤ |tq | and VERIFY(tq , ti, j+ 1, k) then
11: return true
12: if k+ 1 ≤ |ti| and VERIFY(tq , ti, j, k+ 1) then
13: return true
14: if j+ 1 ≤ |tq | and k+ 1 ≤ |ti|
15: and VERIFY(tq , ti, j+ 1, k+ 1) then
16: return true
17:
18: . Accept if d(Pq,j,Pi,k

) ≤ ε and both pointers at are the ends
19: return j == |tq | and k == |ti|

∗ Step 1: SP runs the Key Generation algorithm of the
IPPE scheme and obtain the keys PP , EK , TK . Note
that, SP needs to randomly generate two invertible
matrices M1 of order 6 and M2 of order k + 2.
∗ Step 2: It chooses 2k random numbers γ̂1,m and γ̂2,m

that will be used encrypting query ranges for the two
R-trees {T1, T2}.
∗ Step 3: It generates a secret key sk for a Symmetric Key

Encryption (SKE) scheme.

Finally, he/she publishes the public parameter PP =
((G1,G2, g, p, e),BF (H)), securely distributes TK = (M1,
M2, {γ̂1,m}km=1, {γ̂2,m}km=1, B) and the SKE secret key sk
to each query user Ui ∈ U , and keeps the encryption key
EK = (M1,M2, {γ̂1,m}km=1, {γ̂2,m}km=1, A) as well as sk for
the Data Outsourcing phase.
• Data Outsourcing: In the Data Outsourcing phase, SP

constructs an encrypted index for the dataset with the
encryption key EK and uploads it to CS . Specifically, it
mainly consists of the following three steps.

∗ Step 1: SP encrypts trajectories in the dataset. Specifi-
cally, for each ti ∈ T , SP encrypts each point Pi,j ∈ ti
to [[uPi,j

]]1 with the encryption key (M−1
2 , A) and the

public parameter PP . Furthermore, the identity ID i of
ti will be encrypted as SKE (sk , ID i). Then, we denote
the ciphertext of trajectory ti as

E(ti) =
(
SKE (sk , ID i) ,

〈
[[uPi,1

]]1, · · · , [[uPi,li
]]1
〉)

.

∗ Step 2: In this step, SP builds an index for the
dataset. Firstly, it constructs two R-trees T1 and T2

from the MBR of each trajectory ti ∈ T as de-
tailed in Section 4.4.1. Then, with the encryption key
(M1, A, {γ̂`,m}km=1), to encrypt each R-tree T`, for ` =
1, 2, SP respectively encrypts its inner nodes and leaf
nodes as follows. i) For each inner node in T`, SP
encrypts each MBR R`,j of the node’s children to be
k encrypted vectors {[[uR`,j ,m]]1}km=1. ii) For each leaf
node in T`, SP converts each record r`,j in it to be a

rectangle
∏k
m=1[x`,m, x`,m], i.e., the MBR of r`,j , which

will be further encrypted into {[[ur`,j ,m]]1}km=1.
∗ Step 3: The service provider SP outsources the en-

crypted index {E(T1), E(T2)} and the encrypted
dataset E(T ) = {E(ti) | ti ∈ T } to CS .

4.4.3 Token Generation

To launch a DFD range query, a query user Ui needs to
generate a query token, which mainly consists of three parts,
namely, two query tokens for the R-trees {T1, T2}, and the
encrypted trajectory for the verification step. Specifically,
given a query trajectory tq and a distance threshold ε, the
query token is built in the following two steps.
• Step 1: With the token generation key (M2, B) and

the public parameter PP , the query user Ui runs the token
generation algorithm in Section 4.2 to convert each point
Pq,j ∈ tq to [[vPq,j ,ε]]2.
• Step 2: The query user U computes the query trajectory

tq’s MBR Rtq =
∏k
m=1[xq,m,1, xq,m,2] and respectively gen-

erates tokens for the two rectangles Rq,` =
∏k
m=1[xq,m,` −

ε, xq,m,` + ε], for ` = 1, 2. Then, to generate query tokens
respectively for T`, for ` = 1, 2, Rq,` can be further con-
verted into {[[v`,m]]2}km=1 with the token generation key
(M1, {γ̂`,m}km=1, B) and the public parameter PP .

Finally, U obtains the query token Token ={
{[[v1,m]]2}km=1, {[[v2,m]]2}km=1, {[[vPq,j ,ε]]2 | Pq,j ∈ tq}

}
.

4.4.4 Query

In this phase, U submits the query token Token to the
cloud server CS , and the latter will conduct the query in
the following steps.
• Step 1: CS queries the two encrypted R-trees E(T`), for

` = 1, 2, with {[[v`,m]]2}km=1, i.e., the encrypted query range
on T`. The process of querying an encrypted R-tree is gen-
erally consistent with the idea given in Section 3.2, except
that computing intersections between MBRs in the R-tree’s
nodes and the query trajectory’s MBR. In specific, given an
encrypted MBR {[[uR`,j ,m]]1}km=1 in T` and the query tra-
jectory tq’s encrypted MBR {[[v`,m]]2}km=1, the intersection
is detected through the IPPE-based rectangle-intersection
detection approach detailed in Section 4.3. Similarly, given
a record r`,j ’s encrypted MBR, the intersection with tq’s
encrypted MBR is also computed through the IPPE-based
approach. After querying T1 and T2, the cloud server CS
will respectively obtain two candidate sets C1 and C2.
• Step 2: In this step, CS verifies each candidate trajec-

tory E(ti) ∈ C = C1 ∩ C2. Specifically, it verifies whether
δd(tq, ti) through Alg. 1. However, as CS only have E(ti) =(
[[uPi,1 ]]1, [[uPi,2 ]]1, · · ·

)
and

(
[[vPq,1,ε]]2, [[vPi,2,ε]]2, · · ·

)
, it

cannot directly compute the distance between two points
in ti and tq as shown on Line 6 of Alg. 1. Instead,
CS runs the IPPE-based proximity detection approach de-
tailed in Section 4.2. That is, to determine whether the
Euclidean distance between Pi,j1 ∈ ti and Pq,j2 ∈ tq
exceeded the distance threshold ε, CS computes whether〈
uPi,j1

,vPq,j2 ,ε

〉
> 0 or not through the IPPE scheme.

Then, CS will remove ti from C if Alg. 1 returns false.
After this step, CS can obtain the query result E(Results) =
{SKE (sk , ID i) | E(ti) ∈ C, δd(tq, ti) ≤ ε}.
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• Step 3: CS sends E(Results) to the query user Ui
through a secured channel, and Ui can obtain the plaintext
query result Results = {ID i} by decrypting each element
in E(Results) with the SKE secret key sk .

5 SECURITY ANALYSIS

In this section, we analyze the security of the proposed
privacy-preserving discrete Fréchet distance range query
scheme. Specifically, we first analyze the security of the three
building blocks. Then, following the security requirements
discussed earlier, we will show how the proposed scheme
can achieve the data privacy.

5.1 Security of Building Blocks

As detailed in Section 4, there are three building blocks
in our proposed scheme, namely, the IPPE scheme, and
the proximity detection approach and rectangle-intersection
detection approach based on the IPPE scheme. In the fol-
lowing, we will respectively analyze their security.

5.1.1 Security of The IPPE scheme

In this subsection, we prove that our IPPE scheme is se-
lectively secure in the real/ideal world security model, fol-
lowing the formal definition of this model in [13], [14]. This
security model subsumes the Known Plaintext Attack (KPA)
security definition in the distinguishability setting and is
widely used to prove the security of functional schemes.
In the real/ideal world model, the real world is our IPPE
scheme, while in the ideal world, the scheme is replaced
with an ideal function that only leaks some information
specified by a leakage function. Then, we prove that the
IPPE scheme will only leak the information specified by the
leakage function, i.e., our scheme is selectively secure, by
showing that the two worlds are indistinguishable. Before
delving into the two worlds, we first define the trivial
leakage of our IPPE scheme. Let [[u]]1 and [[v]]2 are the
ciphertexts of u and v, the leakage of IPPE is sign(〈u,v〉),
i.e., L = {sign(〈u,v〉)}. Based on L, we define the real and
ideal worlds.

Real world. The real world involves two participants,
i.e., a probabilistic polynomial time (PPT) adversary A and
a challenger, and they interact with each other as follows.
• Setup phase. A randomly chooses p1 d-dimensional

data vectors {ui}p1i=1 and sends them to the challenger.
On receiving them, the challenger runs the key generation
algorithm of the IPPE scheme to obtain (PP ,EK ,TK ), and
uses EK to encrypt them into ciphertexts, i.e., {[[ui]]1}p1i=1.
Then, the challenger sends the public parameter PP to A.
• Query phase I. In the query phase I, A randomly

chooses p2 d-dimensional token vectors {vi}p2i=1. Then, A
sends {vi}p2i=1 to the challenger. On receiving these token
vectors, the challenger responds with the ciphertexts of the
token vectors encrypted by TK , i.e., {[[vi]]2}p2i=1.
• Challenge phase. In the challenge phase, the chal-

lenger sends {[[ui]]1}p1i=1 (i.e., the ciphertexts of the data
vectors {ui}p1i=1) to A.
• Query phase II. In the query phase II, A randomly

chooses (p′2 − p2) d-dimensional token vectors {vi}
p′2
i=p2+1,

where p′2 is a polynomial number. Then, same as Query
Phase I, the challenger responds with {[[vi]]2}

p′2
i=p2+1.

Ideal world. The ideal world involves two participants,
i.e., a PPT adversary A and a simulator, and they interact
with each other as follows.
• Setup phase. In the setup phase, A randomly chooses

p1 d-dimensional data vectors {ui}p1i=1, where p1 is a poly-
nomial number. Then, it sends {ui}p1i=1 to the simulator. On
receiving them, the simulator runs the following steps.
∗ It first randomly generates a bilinear pairing

(G1,G2, p, g, e), a and b ∈ Z∗p, and a matrix M over
Zp of order (d+ 2)× (d+ 2).
∗ It computes a Bloom filter BF (H), where H =
{H(e(g, g)abi) | i = 1, 2, · · · , T 2 + T}, and sends
PP = {(G1,G2, p, g, e), BF (H)} to A.
∗ For each data vector ui, it randomly generates a (d+2)-

dimensional vector u′i over Zp and computes ui’s ci-
phertext [[ui]]

′
1 = {gau

′′
i,k}d+2

k=1, where u′′i = {u′′i,k}
d+2
k=1 =

M−1u′Ti mod p.
• Query phase I. In the query phase I, A randomly

chooses p2 d-dimensional token vectors {vj}p2j=1, where p2 is
a polynomial number, and sends them to the simulator. On
receiving them, the simulator uses the leakage function L
and {[[ui]]′1}

p1
i=1 (i.e., the ciphertexts of {ui}p1i=1) to generate

the ciphertexts of {[[vj ]]′2}
p2
j=1. For each token vector vj , the

simulator generates a ciphertext [[vj ]]
′
2 as follows.

∗ First, the simulator generates a p1-dimensional vector
Sj = {si}p1i=1, in which each element si is a ran-
dom integer and satisfies that |si| ∈ (0, T 2 + T ] and
sign(si) = sign(〈ui,vj〉) for i = 1, 2, · · · , p1.
∗ Second, the simulator randomly chooses a vector v′j

over Zp such that 〈ui,vj〉 = si, for i = 1, 2, · · · , p1.
∗ The simulator further computes [[vj ]]

′
2 = {gbv

′′
j,k}d+2

k=1 ,
where v′′j = {v′′j,k}

d+2
k=1 = vjM mod p.

After that, the simulator responds A with {[[vj ]]′2}
p2
j=1.

• Challenge phase. In the challenge phase, the simulator
sends {ui}p1i=1 (i.e., the ciphertexts of {ui}p1i=1) to A.
• Query phase II. In the query phase II, A ran-

domly chooses (p′2 − p2) d-dimensional token vectors
{vj}

p′2
j=p2+1, where p′2 is a polynomial number. Then, A

sends {vj}
p′2
j=p2+1 to the simulator. On receiving the to-

ken vectors, the simulator responds with the ciphertexts
{[[vj ]]′2}

p′2
j=p2+1 same as the query phase I.

In the real world, the view of A is ViewA,Real ={
{[[ui]]1}p1i=1, {[[vj ]]2}

p′2
j=1

}
, while that in the ideal world is

ViewA,Ideal =
{
{[[ui]]′1}

p1
i=1, {[[vj ]]′2}

p′2
j=1

}
. Then, based on

the views of A in the real and ideal worlds, we define the
security of the IPPE scheme.

Definition 2. (Security of the IPPE scheme). The IPPE
scheme is selectively secure with the leakage L iff for
any A issuing a polynomial number of data vector en-
cryption and token vector encryption there exists a sim-
ulator such that the advantage that A can distinguish
the views of real and ideal worlds is negligible, i.e.
|Pr[ViewA,Real = 1]− Pr[ViewA,Ideal = 1]| is negligible.

In the following, we prove that the IPPE scheme is
selectively secure with the leakage L.
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Theorem 1. The IPPE scheme is selectively secure with L.

Proof. We prove the security of our IPPE scheme by prov-
ing that A cannot distinguish the views of real and ideal
worlds. Specifically, the views in the real world and the
ideal world are ViewA,Real =

{
{[[ui]]1}p1i=1, {[[vj ]]2}

p′2
j=1

}
and

ViewA,Ideal =
{
{[[ui]]′1}

p1
i=1, {[[vj ]]′2}

p′2
j=1

}
, respectively. Since

all ciphertexts in the ideal world are randomly generated
by the simulator, distinguishing the two views is equiva-
lent to distinguish ViewA,Real from random ciphertexts. To
prove the indistinguishability, we consider the following
two cases.

Case 1: The ciphertexts {[[ui]]1}p1i=1 and {[[vj ]]2}
p′2
i=1 are

indistinguishable from random ciphertexts;
Case 2: The intermediate results {ψi,j = γi,2γj,4 〈ui,vj〉

+γi,1 + γj,3 | 1 ≤ i ≤ p1, 1 ≤ j ≤ p′2} are indistinguishable
from random integers in range (0, T 2 + T ), where γi,1 and
γi,2 (resp. γj,2 and γj,4) represent the random numbers γ1

and γ2 (resp. γ3 and γ4) in the ciphertext [[ui]]1 (resp. [[vj ]]2).
Specifically, in addition to the ciphertexts considered in

Case 1, we need to consider the indistinguishability between
intermediate results that can be obtained by A, and {ψi,j |
1 ≤ i ≤ p1, 1 ≤ j ≤ p′2} are the intermediate results with
the least number of unknown variables. This is mainly due
to that, A can remove the randomness introduced by the
random matrix M by computing

Ψi,j =
d+2∏
k=1

e(gau
′′
i , gbv

′′
j ) = e(g, g)ab(γi,2γj,4〈ui,vj〉+γi,1+γj,3).

Then, A can easily guess the corresponding ψi,j =
γi,2γj,4 〈ui,vj〉 + γi,1 + γj,3 of each Ψi,j with BF (H) and
multiple Ψi,j , as |ψi,j | ∈ (0, T 2 +T ) is not sufficiently large.
Thus, ifA cannot distinguish {ψi,j | 1 ≤ i ≤ p1, 1 ≤ j ≤ p′2}
from random integers in range (0, T 2+T ), all other interme-
diate results are indistinguishable from random ciphertexts.
Therefore, we consider Case 1 and Case 2 in the indistin-
guishability proof as follows.
• {[[ui]]1}p1i=1 and {[[vj ]]2}

p′2
i=1 are indistinguishable from

random ciphertexts. For [[ui]]1, the k-th element in it is
(ga)u

′′
i,k and u′′i,k =

〈
M−1
k ,u′i

〉
∈ Z∗p, where M−1

k is the k-th
row of matrix M−1. Without knowing the value of M, A can
neither recover u′′i,k based on the DLP problem nor distin-
guish (ga)u

′′
i,k from a random element in Zp. Thus,A cannot

distinguish {[[ui]]1}p1i=1 from random ciphertexts. Similarly,
{[[vj ]]2}

p′2
i=1 is indistinguishable from random ciphertexts.

Therefore, {[[ui]]1}p1i=1 and {[[vj ]]2}
p′2
i=1 are indistinguishable

from random ciphertexts.
• {ψi,j | 1 ≤ i ≤ p1, 1 ≤ j ≤ p′2} are indistinguish-

able from random integers in range (0, T 2 + T ). Since
ψi,j = γi,2γj,4 〈ui,vj〉+γi,1 +γj,3 and it contains many ran-
dom numbers including {γi,1, γi,3, γj,2, γj,4}. These random
numbers can make ψi,j indistinguishable from a random
integer in range (0, T 2 + T ). Thus, {ψi,j | 1 ≤ i ≤ p1, 1 ≤
j ≤ p′2} are indistinguishable from random integers in range
(0, T 2 + T ).

Thus, we can deduce that ViewA,Real is indistinguish-
able from random ciphertexts. Hence, A cannot distinguish
ViewA,Real and ViewA,Ideal, and thereby, it cannot distin-

guish the two worlds. Therefore, the IPPE scheme is selec-
tively secure with the leakage L.

5.1.2 Security of The IPPE-Based Proximity Detection and
Rectangle Intersection Detection Approaches
Based on the security of the IPPE scheme, we respectively
analyze the security of the IPPE-based proximity detection
approach and the IPPE-based rectangle-intersection detec-
tion approach as follows.
• The IPPE-based proximity detection approach is privacy-

preserving: Given an encrypted data vector [[uPi ]]1 and an
encrypted token vector [[vPj ,ε]]2 representing the coordi-
nates of two points {Pi, Pj} and a distance threshold ε,
the server can run the IPPE-based proximity detection ap-
proach to determine whether the distance between the two
points exceeds the distance threshold, i.e., d(Pi, Pj) > ε,
or not. In the meantime, the server may be curious about
the coordinates of {Pi, Pj}, the distance d(Pi, Pj), and ε.
However, since Pi and {Pj , ε} are respectively encrypted
in [[uPi ]]1 and [[vPj ,ε]]2, based on the security of the IPPE
scheme, the server cannot obtain Pi, Pj and ε. Meanwhile,
the inner-product of the two vectors

〈
uPi ,vPj ,ε

〉
represents

the difference between the distance and the distance thresh-
old, i.e., d(Pi, Pj) − ε. Based on the property of the IPPE
scheme, the server can only obtain sign(d(Pi, Pj)−ε), but it
cannot recover the distance d(Pi, Pj). Thus, the IPPE-based
proximity detection is privacy-preserving.
• The IPPE-based rectangle-intersection detection approach is

privacy-preserving: Given the ciphertexts of two rectangles
{Ri, Rj}, i.e., {[[ui,m]]1}km=1 and {[[vj,m]]2}km=1, the server
can run the IPPE-based rectangle-intersection detection ap-
proach to determine whetherRi intersects withRj or not. In
the meantime, the server may be curious about the locations
and the sizes of R1 and R2. However, based on the random
number for each dimension γ̂m, the inner-product between
data vectors and token vectors from different dimensions
will not reveal any useful information. Therefore, we mainly
focus on the privacy-preservation for each dimension. That
is, given an encrypted data vector [[ui,m]]1 and an encrypted
token vector [[vj,m]]2, the server can determine whether Ri
and Rj overlap on the m-th dimension or not. Meanwhile,
it may be curious about the ranges covered by Ri and Rj on
this dimension, i.e., [xi,m,1, xi,m,2] and [xj,m,1, xj,m,2], and
the relative locations of the two ranges, i.e., xi,m,2 − xj,m,1
and xj,m,2−xi,m,1. Nevertheless, since the ranges Ri,m and
Rj,m are respectively encrypted into [[ui,m]]1 and [[vj,m]]2,
based on the privacy of the IPPE scheme, the server cannot
obtain the two ranges. Moreover, based on the property
of the IPPE scheme, the server can only know the sign of
the inner-product, i.e., sign(〈ui,m,vj,m〉). Hence, the server
only obtains which dimensions do R1 intersect with R2, but
no more useful information related to the two rectangles
are revealed. That is, the IPPE-based rectangle-intersection
detection approach is privacy-preserving.

5.2 Security of the Proposed Scheme

In this subsection, we prove that our proposed PDRQ
scheme is selectively secure against honest-but-curious adver-
sary with a leakage function LScheme, following the formal
definition of selective security model in [13], [14]. Given the
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dataset T and a set of queries Q, the leakage function
LScheme = {IS(T ),AP(T ,Q),SP(T ,Q)} consists of three
parts:
• Index Structure IS(T ): the fan-out of each inner node in

the two R-trees {T`}2`=1, the identical relationships between
leaf nodes in the two R-trees, and the number of points in
each trajectory ti ∈ T .
• Access Pattern AP(T ,Q): the collection of all records

in T that match each query Q ∈ Q, i.e., AP(T ,Q) =
{E(ResultsQ) | ∀Q ∈ Q}.
• Search Pattern SP(T ,Q): for each query Q = (tq, ε) ∈

Q, the search pattern consists of two parts:
i) {M`,Q}2`=1: two k × |T`| binary matrices indicating

whether the MBR of Q intersects each node in T` on each
dimension, where |T`| represents the number of nodes in T`;

ii) {Mti,Q}ti∈T : |T | binary matrices of dimension |ti| ×
|tq|, where each Mti,Q indicates whether the distance be-
tween each pair of points in ti and tq exceeds ε.

That is, the search pattern can be defined as SP(T ,Q) =
{M`,Q | Q ∈ Q, ` = 1, 2} ∪ {Mti,Q | Q ∈ Q, ti ∈ T }.

Theorem 2 (Security of PDRQ). PDRQ is selectively secure
against honest-but-curious adversary with LScheme if the IPPE
scheme is selectively secure.

Proof. We proof the security of PDRQ by constructing a
simulator S , which interacts withA in the following phases.
• Setup phase.A randomly generates a plaintext dataset

T and submits it to S . Then, S generates PP by running
the key generation algorithm of IPPE and sends PP to A.
Furthermore, S generates ciphertexts for T in two steps.

Step 1. For each trajectory ti ∈ T , S randomly generates
|ti| vectors {ũPi,j

∈ Z
(k+2)
p }|ti|k=1 and encrypts them through

IPPE as ti’s ciphertext.
Step 2. S generates two empty R-trees {T̃`}2`=1 based

on IS(T ). Then, S generates the ciphertext for each k-
dimensional MBR

∏k
m=1[x`,m,1, x`,m,2] in T̃` by i) randomly

generates k random vectors ũ`,m ∈ Z4
p and ii) encrypts them

through IPPE.
• Query phase I. A randomly generates p1 queries

{Qi = {tqi , τi}}
p1
i=1, where p1 is a polynomial number, and

sends them to S . On receiving them, S generates the token
T̃okenQi

for each Qi in two steps.
Step 1. S generates tokens for points in tqi by computing

|tqi | vectors {ṽqi,j ∈ Z(k+2)
p }|tqi |j=1 such that {Mti,Qi

}ti∈T in
the leakage LScheme is satisfied.

Step 2. S computes 2 × k vectors {ṽ`,m ∈ Z4
p | m =

1, · · · , k, and ` = 1, 2} such that {M`,Qi}2`=1 is satisfied.

Finally, S sends the tokens {T̃okenQi}
p1
i=1 to A.

• Challenge phase. In the challenge phase, S sends the
two encrypted R-tree {T̃`}2`=1 and E(T̃ ) to A.
•Query phase II. Similar to Query phase I,A submits p2

queries {Qi}p1+p2
i=p1+1 to S , where p2 is a polynomial number,

and S responses with their tokens {T̃okenQi
}p1+p2
i=p1

.
We can obtain the simulated view ViewA,Ideal of A =

{{T̃`}2`=1, E(T̃ ), {T̃okenQi
}}, which is conspicuously indis-

tinguishable to ViewA,Real, i.e.,A’s view during running our
PDRQ scheme, when our IPPE scheme is selectively secure.
Hence, our PDRQ scheme is selectively secure.

6 PERFORMANCE ANALYSIS

In this section, we evaluate the performance of our pro-
posed scheme with respect to the computational cost of
data outsourcing, token generation, and query phases. As
detailed in Section 7, Zhu et al.’s work [10] is most related
to our work, but adapting it to our scenario will introduce
heavy computational costs and communication overhead to
the query user. Therefore, it is not applicable to the IoT
scenario where Ui is resource-constrained, and we will not
compare it with our work in this section. To demonstrate
the efficiency of our encrypted index, we build a baseline
scheme by solely employ our IPPE-based proximity detec-
tion technique and compare the time consumption for the
cloud server to conduct a query in our PDRQ scheme and
in the baseline scheme.

6.1 Experimental Setting
We implemented our scheme1 with Java and Java Pairing-
Based Cryptography Library (jPBC) [15], and we conducted
experiments on a machine with an Intel(R) Xeon(R) Gold
6140 CPU @ 2.30GHz, 8GB RAM and Debian 11 operating
system, and an Android 10.0 platform with a Qualcomm
(R) Snapdragon (TM) 712 2.30GHz CPU and 8GB RAM. In
our experiment, we select the security parameter κ = 512
and run the key generation phase of the IPPE scheme to
obtain the keys PP , EK , and TK , and we employ the
Bloom filter implementation provided by Google Guava
[16] with parameters expectedInsertions = 30, 000 and
fpp = 0.03 (equivalent to ∆ = 6.57 × 109 and f = 5). We
evaluate the performance of PDRQ on a commonly used
synthetic dataset [17], which contains 20,200 GPS trajectories
of varied lengths. Since the values in the dataset are real
numbers, by respectively selecting offsets for latitude and
longitude, we first map each of them to a positive number
by adding the corresponding offset. Then, we further round
them to integers after dividing them by 100. In addition,
for each experiment, we conduct 50 times and the average
result is reported.

6.2 Experimental Results
In this subsection, we respectively show the computational
cost of data outsourcing, query token generation, and dis-
crete Fréchet distance range query phases.

6.2.1 Data Outsourcing
To protect the privacy of the trajectory data, the service
provider SP encrypts his/her it in the data outsourcing
phase. Therefore, the computational cost is related to two
parameters, namely, the number of trajectories in the dataset
N and the length of each trajectory l. To evaluate the
relationship between the computational cost and the two
parameters, we construct sets of trajectory from the original
dataset with numbers of trajectories ranging from 200 to
1000, while the lengths of trajectories in these sets range
from 10 to 50. As shown in Fig. 5, the average time con-
sumption of the data outsourcing phase increases with the
number of trajectories N and the trajectory length l of the
dataset.

1. The code is available at https://github.com/guanyg/frechet .
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Fig. 5. Average time consumption of data outsourcing with different
number of trajectories and different trajectory lengths.

6.2.2 Query Token Generation
To launch a query, the query user U encrypts his/her query
trajectory and its MBR, in which the computational cost
for encrypting the trajectory is linear to its length, and
the computational cost for encrypting the MBR is constant.
Therefore, the overall computational cost of this phase is re-
lated to the length of the query trajectory. As shown in Fig. 6,
the time consumption for the PC and the Android platforms
increases with the trajectory length l. When l = 50, the
average time consumption for the PC platform to generate
a query token is around 2.4s, while that for the Android
platform is around 4.3s.
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Fig. 6. Average time consumption of query token generation with differ-
ent trajectory lengths.

6.2.3 DFD Range Query Processing
As detailed in Section 4.4, given a DFD range query token
Token , the cloud server CS first obtains a set of candidates
by querying the two R-trees, and then it refines the candi-
date set by verifying each trajectory in it. Specifically, the
computational cost of the first step is related to the number
of trajectories in the dataset and the threshold ε, while that
of the second step is related to the length of trajectories
and the query threshold ε. We respectively analyze the
computational cost of these two steps as follows.
• The computational cost of the filtration step: As shown in

Fig. 7, the average time consumption for the filtration step
increases with the number of trajectories in the dataset and
the threshold ε. This is mainly because that, as the number
of trajectories increases, the two R-trees will become deeper,

which results in more rectangle intersection operations. In
addition, as a larger threshold ε results in a larger query
range for each R-tree, the computation cost also increases
with ε.
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Fig. 7. Average time consumption for the server to obtain candidate
sets for queries of different threshold ε on datasets containing different
numbers of trajectories.

As shown in Fig. 8, the number of candidates obtained in
the filtration step increases with the number of trajectories
in the dataset and the query threshold. However, the num-
ber of candidates is considerably smaller than the original
dataset. For instance, while conducting a query with ε = 20
over a dataset containing 1000 trajectories, the candidate
set averagely contains around 20 trajectories. That is, our
filtration step can effectively reduce the computational cost
for conducting queries.
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Fig. 8. Number of candidates obtained in the filtration step of different
numbers of trajectories in the dataset and different query thresholds ε.

• The computational cost of the verification step: As shown
in Fig. 9, the upper bound of the time required for the
verification step increases with the length of trajectories,
since the dynamic programming algorithm for verifying the
discrete Fréchet distance may take more steps for verifying
longer trajectories. However, as demonstrated in the figure,
the average time consumption only slightly increases with
the trajectory length. This is mainly because that, for most
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TABLE 2
Comparison on Existing Works

Scenario Technique Efficiency Drawbacks
[18]–[24] Trajectory publish / query Anonymization-based Efficient Cannot obtain accurate query results

[10], [25], [26] Distance metric evaluation / query Work-specific protocols Inefficient Cannot directly support DFD range queries
[27], [28] Proximity testing PET or PSI Inefficient Cannot efficiently handle DFD range queries

cases, the algorithm do not need to go through the two
trajectories to verify whether their DFD is larger than ε.
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Fig. 9. Time required for the server to verify each trajectory of different
lengths and different thresholds ε. In this figure, the orange line repre-
sents the average time consumption of the verification step for different
length of trajectories.

In Fig. 10, we plot the overall computational cost for the
cloud to handle DFD range queries in our PDRQ scheme
and the baseline scheme. As shown in the figure, the time
consumption for the cloud server both schemes increases
with the dataset size N and the distance threshold ε. How-
ever, the time consumption for the cloud to handle a DFD
range query in the baseline scheme is much higher than that
in our PDRQ scheme, and it increases linearly to the dataset
size N .
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Fig. 10. Time consumption for the cloud to handle a DFD range query
in our PDRQ scheme and the baseline scheme with different distance
thresholds ε and different dataset sizes N . In the figure, the orange
lines indicate the average time consumption for the baseline scheme
to handle a DFD range query, and the box plots demonstrate the query
time consumption for our PBRQ scheme.

7 RELATED WORK

Many studies have been proposed to handle range queries
over records other than trajectories (e.g., two-dimensional
points [29]). However, as their distance metrics cannot
be directly adopted to handle trajectories, in this section,
we mainly focus on privacy-preserving trajectory analysis.
Based on the techniques employed in these schemes, they
can be divided into two categories, namely, k-anonymity
based schemes [18]–[24] and encryption based schemes [10],
[25], [26]. We compare these related works and conclude
their drawbacks when deploying them to handle DFD range
queries in Table. 2.
• k-anonymity based Schemes: Chow and Mokbel’s work

[18] achieves trajectory k-anonymity in LBSs by dynamically
expending cloaked areas such that each area will always
include k trajectories. Abul et al. [19] proposed the Never
Walk Alone (NWA) scheme to achieve (k, δ)-anonymity for
mobile object databases based on clustering and space trans-
lation. Then, Xu and Cai [20] improved the NWA scheme by
anonymizing the stay points on users’ trajectories through
grid-based and clustering-based approaches. Gao et al. [21]
proposed a trajectory privacy-preserving framework, which
involves a mix-zone model enhanced by considering the
time factor from the perspective of graph theory. Focusing
on continuously LBS queries, Peng et al. [22] proposed a
collaborative trajectory privacy preserving scheme, in which
users protect their actual trajectories by launching fake
queries. Tian et al. [23] proposed a scheme for mining social
ties from users’ trajectories, which cloaks each location in the
trajectories as semantic regions. Zhang et al. [24] proposed
a trajectory privacy-preserving scheme, in which multiple
anonymizers and the dynamic pseudonym mechanism are
employed to preserve users’ trajectory privacy. The above-
mentioned works cannot apply to our scenario, since their
privacy-preserving feature is obtained by reducing the ac-
curacy of locations, which may significantly affect the cor-
rectness of DFD range queries.
• Encryption based Schemes: Zhu et al. [10] proposed a

privacy-preserving time series distance evaluation scheme
in which Dynamic Time Warping (DTW) and discrete
Fréchet distance are considered, which can be also applied
on trajectory data. However, to apply it to our scenario,
the server needs to compute the encrypted DFDs between
the query trajectory and every trajectories in the dataset
and further compare them with the encrypted threshold
under the user’s help, which has unacceptable costs on
both computation and communication. Based on the Paillier
cryptosystem and garbled circuits, Liu et al.’s work [25] can
securely evaluate DTW, Longest Common Subsequences
(LCSS) and Edit Distance on Real sequence (EDR) distances,
but it cannot be applied to conduct DFD range queries due
to the same reason as Zhu et al.’s work. Based on Paillier
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and Sharmir’s secret sharing, Hallgren et al. [26] proposed a
scheme to test whether two encrypted trajectories satisfy the
criteria for ride sharing. However, it is built upon a secure
protocol specifically tailored for the ride sharing scenario
and cannot be easily adapted to support DFD range queries.
Hence, all the above-mentioned works cannot apply to our
scenario, as they employ specifically tailored protocols or
cannot efficiently support range queries.

Therefore, although many privacy-preserving trajectory
analysis schemes have been proposed, some of them cannot
directly apply to our scenario, while some others suffer
from sever accuracy or efficiency issues. On the other
hand, according to the definition of DFD, existing works
on privacy-preserving proximity testing seem to be a sound
solution for DFD range queries. Nevertheless, many of them
[27], [28] are built upon private equality testing (PET) or
private set intersection (PSI) protocols and cannot efficiently
support dynamic distance thresholds with one party offline
(to simulate the encrypted static points in the outsourced
trajectories). More importantly, as demonstrated by our
experimental results, applying these schemes to handle DFD
range queries requires linearly scanning the whole dataset to
verify whether each trajectory matches the query requests,
resulting in an unacceptable performance on large datasets.
In this paper, we propose a PDRQ scheme to efficiently
achieve accurate DFD range query while protecting the
privacy of the dataset and users’ queries.

8 CONCLUSION

In this paper, we have proposed a novel privacy-preserving
discrete Fréchet distance range query scheme, which can
return accurate query results while preserving the privacy
of the dataset and user queries. Specifically, to build our
privacy-preserving discrete Fréchet distance range query
scheme, we employed bilinear pairing to design an Inner-
Product Preserving Encryption (IPPE) scheme. Then, based
on the IPPE scheme, we respectively developed two ap-
proaches for proximity detection and rectangle intersection
detection. Furthermore, we built our privacy-preserving
discrete Fréchet distance range query scheme based on the
IPPE-based proximity detection and rectangle intersection
detection approaches, in which user queries are conducted
in a filtration-and-verification manner. Detailed security
analysis shows that our proposed scheme is indeed privacy-
preserving, and the performance analysis also indicates that
our filtration process can significantly reduce the compu-
tational cost. In our future work, we will further evaluate
our proposed scheme in real platform and exploit how to
improve the efficiency of the verification step.
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